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Abstract

The paper presents the recent results of a research
project active at the University of Bologna and aimed at
the emulation by means of computer vision algorithms of
the inductive sensors used for vehicle detection in Urban
Traffic Control (UTC) systems. Emulation of inductive sen-
sors using computer vision has traditionally been based on
Sum of Absolute Differences (SAD) algorithms. In this pa-
per we propose an approach based on the Normalized Cross
Correlation function (NCC) and present experimental re-
sults aimed at comparing SAD and NCC based vehicle de-
tection. Our results show that the NCC-based algorithm
significantly outperforms the SAD-based one.

1. Introduction

In recent years most cities all over the world have in-
stalled UTC systems to improve traffic fluency and reduce
pollution. These systems [6] need the vehicle flows at in-
tersections and along road segments as input data. Traf-
fic data can be collected either by inductive loops [5], [4]
or by suitable computer vision algorithms applied to traf-
fic images [10], [8], [7], [3]. The latter rely on the anal-
ysis of sensitive windows positioned on the image by an
operator during set-up operations. Once the windows has
been defined, vehicles are detected within each window by
“comparing” [13] the current gray-level distribution with a
reference background distribution acquired when no vehi-
cle is running over the window. However, though the use of
vision-based vehicle detection systems is notably increasing
in highways environments, so far UTC systems carry on us-
ing inductive loops. The reason of this is to be found in the
shared perception among UTC producers of an insufficient
level of reliability of computer vision solutions. Moreover,
even though computer vision based sensors require low in-
stallation and maintenance costs, they still sell at quite high
prices, definitely higher than inductive-loops.

In this context, our project’s goal is to develop a very re-
liable, low-cost and compact computer vision-based sensor
capable of emulating the behaviour of an inductive loop. In
this paper we address the issue of the method used to com-
pare current image and background. While most computer
vision systems for loop emulation rely on the SAD (Sum
of Absolute Differences), we propose the use of the NCC
function and show experimental results aimed at evaluating
these two approaches.

2. Similarity Measures

As mentioned before, in computer vision based loop-
emulation the analysis of the sensitive window consists in
comparing a reference image (the background taken with-
out vehicles) with the current image [15]. To the best of our
knowledge the Sum of Absolute Differences (SAD) func-
tion has been the typical choice for the execution of this
comparison [12], [11], [16], [2], [14].

Due to the extreme variability of the environment condi-
tions in urban areas, the background changes frequently its
aspect and a suitable background updating stage must be in-
corporated into the standard detection algorithm. Shadows,
clouds and artificial-related light changes, together with de-
vices “auto-gain” (or “auto-iris”) are among the most com-
mon noise sources for background. In this paper we propose
to carry out the image-background comparison in the sen-
sitive windows by means of the Normalized Cross Corre-
lation function (NCC). Looking at Figure 2, if we consider
the pixels of anM � N sensitive window as the compo-
nents of an(M � N)�dimensional vector, the SAD cor-
responds to theL1 norm of the difference~D between the
two vectors representing respectively the current sensitive
window ~C and the background~B. This is significantly af-
fected by both image brightness and image texture, with the
former typically changing very frequently as a result of the
previously mentioned noise sources (~C goes in ~C 0 and the
difference~D goes in ~D0). Conversely, the NCC function
correspond to the angle between the two vectors represent-



Figure 1. The VIL output display.

ing the image and the background, and therefore is much
more robust with respect to noisy brightness variations (i.e.
it is potentially sensitive only to the true texture variations).

Figure 2. SAD comparison representation un-
der variations.

3. Implementation

We have implemented both SAD and NCC-based vehi-
cle detection in a software application running on a personal
computer equipped with a frame grabber board which can
be connected to a VCR or a video-camera. The frame grab-
ber used to process the image flow is a low cost one: it is
based on a common chip (the Brookthree “BT-848”) that
integrates both the ADC video sampler and the PCI bus in-
terface. The software development kit for interfacing the
grabber drivers with the operative system is the Microsoft
“Vision SDK” [9]. This tool allows to access to the image
pointers so as to get images from the frame grabber as ma-
trices at video-rate speed and display-it on the application
window. The image processing stage is performed by Vi-
sual C++ code. The program, referred to as “VIL Analyser”
(where VIL is an abbreviation of Virtual Inductive Loop),
allows the user to position the sensitive windows in the im-



Seq1 Seq2 Seq3
Light trends Constant light on whole

duration
A smooth increase of lighting

bring noise over SAD thresholds
on 4% of true events

A fast light increase happens
after 43% of true events; the
light stays high until the end

Duration 6’ 05” 7’ 06” 6’ 49”
True events 99 93 74

Occlusions on
true events

15% 4% 22%

Table 1. Features of benchmark sequences

age and then evaluate the performances of the algorithms in
the vehicle counting task. The VIL output display is shown
in Figure 1: the virtual loop defined by the user is indi-
cated by the black arrow while the vehicle counter appears
in the application state-bar; the output, “loop-like” signal
produced by the VIL comparing the current image against
the background is displayed in the bottom-left area of the
application-window. The vehicle counter is incremented by
thresholding the output signal by means of a two-valued,
hysteresis process: to count a vehicle the signal must first
overtake the high threshold and then fall below the low one.

The VIL Analyser program allows also the user to
choose between fixed background (typically acquired when
no vehicles are in the loop-window) and “weighted back-
ground updating”, in which the background is continu-
ously updated by the algorithm according to two weights:
New bkg = Old bkg � w1 + Actual img � w2, with
w1 + w2 = 1.

The two weights control the speed with which the back-
ground is updated by the algorithm: asw1 gets closer to 1
the updating process gets slower.

4. Experimental results

To perform the evaluation of SAD and NCC based vehi-
cle detection we have defined benchmark sequences char-
acterised by a specific light trend. We have scanned a four
hours video-tape, finding the three sequences defined in Ta-
ble 1. “True events” is the number of vehicles that should
be detected by an ideal virtual loop. “Occlusions on true
events%” is the percentage of true events in which the back-
ground does not appear between successive vehicles. In Ta-
ble 2 we report the experimental results of the evaluation
process. The continuous background updating is done with
weightsw1 = 0:95, w2 = 0:05. Virtual loop size are 7
pixels height, 26 pixels width. Relative thresholds for hys-
teresis has been kept the same over the whole measurement
set. The basic performance measure is defined as:

Accuracy% =

�
1�

����TrueEv �MeasEv

TrueEv

����
�
� 100:

The estimation ofaccuracy% does not takes into ac-
count the possible over/under-counts compensation. This

is a common way to estimate the accuracy of these systems
[1] since vehicle detection sensors for UTC systems must
keep counting under several light conditions rather than be-
ing punctually exact in counts.

Over-counts often happens due to the presence of the
windscreen (or by multiple edges on long vehicles) that
causes more than one peak in the output signal. This prob-
lem can be alleviated by increasing the size of the virtual
loop, but unfortunately this increases also the under-counts
since it reduces the resolution when two vehicles are queued
very close each other. Indeed, the major cause of under-
counts are vehicle occlusions, i.e. “train” of vehicles riding
very close each other and hiding the road background in
between. This drawback increases when images are taken
under strong perspective distortion.

Looking at Table 2 from left to right, starting fromSeq1
we can observe, in column 2, that NCC performs 18%
better than SAD. This is due to SAD’s higher sensitivity
to vehicles gray-tone: if vehicles are similar to the road
background, SAD cannot detect enough difference. Con-
versely NCC can detect vehicles much more independently
of their gray-tone. In column 3, both SAD and NCC
improve their accuracy under the effect of the weighted
background updating stage. A detection improvement due
to background updating might be surprising in a sequence
without light changes. Yet, this can be understood if we
consider long occlusions due to “train” of vehicles. Under
continuous updating the background tends to be turned to
the texture of the vehicle actually running in the window,
so that the detector can recognise differences between
different vehicles. Indeed,Seq1 is a sequence with a
remarkable percentage of occlusions. In other words, the
weighted updating stage improves the robustness of VIL
with respect to vehicle occlusions.
In Seq2, the 4% of true events is affected by a light
change that makes SAD overtaking the lower threshold
also without vehicles. When this happens the SAD-based
VIL stops counting. In Table 2, column 4, we find that the
performance difference between SAD and NCC is 22%,
i.e. exactly a 4% worse than the difference in the case
of no light changes (column 2). If we start the weighted
background updating, the difference between SAD and
NCC decreases to 20% (column 5) because SAD can



Seq1: constant light Seq2: smooth light change that impacts
4% of total events

Seq3: light discontinuity after 43% of
events

Bkg acquired once:
Accuracy%

Bkg updated
continuously:
Accuracy%

Bkg acquired once:
Accuracy%

Bkg updated
continuously:
Accuracy%

Bkg acquired once:
Accuracy%

Bkg updated
continuously:
Accuracy%

SAD 72.7% 81.5% 78.5% 79.3% 36.5% 70.3%
NCC 90.9% 98.7% 100.0% 98.9% 86.5% 89.2%
(�%) (18%) (16%) (22%) (20%) (50%) (19%)

Table 2. SAD and NCC performances under different lighting situations

count (after a while, depending on the weight values)
even during the light variation. Please note that the 100%
accuracy of NCC in column 4 is due to the compensation
of under/overcounts. Finally, inSeq3, after 43% of the
events, the SAD value goes over the threshold due to the
sharp lighting change and therefore the SAD-based VIL
stops counting. For this reason the SAD accuracy is quite
low in column 6. Even the NCC performs worse in the
same column, but this is due to the higher percentage
of occlusion (22%) in this sequence. If we turn on the
weighted background updating (column 7) the NCC im-
proves as usual and SAD improves quite a lot (from 36.5%
to 70.3%) because it can now count vehicle also after the
light discontinuity.

5. Conclusion

In this paper we have proposed the use of the NCC
function as a comparison criteria for vehicle detection in
vision-based sensors for UTC systems. We have compared
an NCC-based loop-emulation algorithm with a SAD-based
one, since SAD is the comparison criteria traditionally em-
ployed in vision systems for loop-emulation. Our exper-
imental results show that NCC significantly outperforms
SAD (the accuracy is always better of, at least, a 16%). Our
results for SAD are comparable to others found in litera-
ture [1]. Using weighted background updating both SAD
and NCC grant better performance, under either constant or
varying light. The improvement in the constant light situ-
ation is due to the better ability to detect “train” of vehi-
cles. The NCC is insensitive to most common background
noise sources (generally, changes of light) and allow detec-
tion systems to work even without a background noise filter.
The NCC used as a “change detection function” over small
windows does not add significant computational complexity
and results as a fast image processing elaboration. Running
our software on a 200 MHz Pentium processor, we always
processed 25 images per second, corresponding to the PAL
video standard frame-rate.

As consequence of these experimental results, we will
use the NCC function as the comparison criteria in the im-
plementation of the compact, low-cost sensor mentioned in

the introduction which is the final goal of our work.
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