
Analysis of Pixel-Level Algorithms for Video Surveillance Applications

Luigi Di Stefano, Giovanni Neri, Enrico Viarani
DEIS - Department of Electronics Computer Science and Systems, University of Bologna

Via Risorgimento, 2 - 40136 Bologna, ITALY
{ldistefano, gneri, eviarani}@deis.unibo.it

http://labvisione.deis.unibo.it

Abstract
We propose a classification for a set of pixel-level

algorithms employed in video surveillance applications
and define a performance evaluation metric, based on an
analysis of experimental data, for comparing the
addressed algorithms. The results of such a comparison
are presented and discussed. The set of algorithms
considered in this work comprises several algorithms
widely known in literature.

1. Introduction

Video Surveillance (VS, from now on) is among the
most important application fields for Computer Vision
and Pattern Recognition.

A remarkable deal of work have been done aimed at
developing “special-purpose” VS-systems chasing high-
level assessment tasks (a survey [6], traffic data collection
and monitoring [4] [5], gesture recognition of people
exchanging objects in public areas [9]). General-purpose
VS-systems are, instead, more versatile thanks to their
independence from scene knowledge. This makes
general-purpose VS-systems easier to configure and
suitable to meet typical VS needs so far delegated to
humans.

The structure of a general-purpose VS-system, shown
in Figure 1, can be thought as a hierarchy of three levels:
the Pixel-Processing Level, the Frame-Processing Level
and the Tracking-Processing Level. The first level mainly
distinguishes objects from background, classifying all the
image pixels; it typically embodies a set of noise filters
for the most common noise sources, which will be
referred to as “Typical Problems” in the reminder of the
paper. At the Frame-Processing Level the VS-system
joins together foreground pixels belonging to the same
object and also, based for instance on proximity or speed
criteria, may attempt to group blobs belonghing to object
parts which have been recovered as non connected
regions by the lower processing level. In the Frame-
Processing level it is often present a size-filtering stage

aimed at cutting small blobs, probably coming from noise.
The Tracking Level tracks entire objects managing events
like merges, splits, occlusions, sudden motion of a
background object or foreground objects becoming
motionless; it also determines objects features like size,
speed and direction, interactions, gestures (if objects are
humans). If the scene is outdoor, the tracking level can
keep count of the daytime light cycle in order to manage
shadows and optimise parameters following the changes
due to different lighting conditions. The two higher levels
can also provide feedback information for the underlying
ones in order to set properly their parameters.

Figure 1. Hierarchical Structure of a VS-system

However, many relatively-simple and general-purpose
VS-systems rely on the Pixel-Processing level only, since
they perform just motion or change-detection in selected
areas, in order to give simple triggers to the human
analysis of the incoming video sequence [10] (instead of
giving an interpretation of what is happening on the
scene). These systems allow to manage multiple on-line
events as well as off-line event viewing, thanks to

Time of the
Day

Light-cycle

Scene
Geometry

-
R.O.I.

Tracking Level
Tracking Level

Frame Processing Level
Frame Processing Level

Pixel Processing Level
Pixel Processing Level

Image
sequence

Foreground/Background pixels

Segmented Objects

Size
Filtering

Blob
Segmentation

Objects’
Parameters
Extraction

Object
Tracking

Noise
Filtering

Pixel
Classification

automatic video recording triggered by the change-
detection algorithm.

For both, level-structured and simple, general-purpose
VS-systems the result of the Pixel-Level processing
conditions the performance of the whole system. The
higher is the reliability of the pixel classification stage,
the better will be the quality, the speed and the versatility
of the VS-system. For instance, a noisy pixel
classification will decrease the speed of the Frame-Level
processing stage which will result saturated due to noise
filtering, or will over-trigger the user.

Among the most important “Typical Problems” for the
Pixel-Level stage there are: changes in scene illumination
(for instance, clouds hiding the sun), background
instability due to motion (e.g. waving trees), object
camouflage over background (objects with the same
colour as the background), foreground objects detection
aperture due to homogeneously coloured objects [14].
Whenever unprotected against such a noise sources, VS-
systems miss foreground pixels or classify as
“foreground” pixels belonging to the background,
compromising the quality of the whole system.

The goal of this work is to analyse and compare a
selected set of Pixel-Level algorithms chosen among
those suitable to general-purpose VS-systems. Some of
them are widely known in literature while some others,
which will be described in more detail, have been
developed by the authors in the context of this research.
In order to carry out the comparison we propose a
classification of the considered algorithms and define a
performance evaluation metric based on the analysis of
experimental data. These come from the analysis of a set
of benchmark sequences showing most of the Typical
Problems for Pixel-Level algorithms.

2. Pixel level algorithms

Pixel-Level algorithms (found in [1], [6], [7], [8], [9],
[12], [13], [15]) can be classified into the two major
classes shown in Figure 2. Background Algorithms use a
background reference to classify pixels, while Frame-
Differencing Algorithms extract foreground pixels by
comparing the current frame with previous frame(s).

Figure 2. Classification of Pixel-Level algorithms

In the initial phase of our work aimed at evaluating
Pixel-Level algorithms we carried-out a "Pre-Selection"

step by implementing several algorithms, collecting
experimental data obtained in benchmark sequences and
comparing the algorithms belonging to the same class on
the basis of the performance evaluation metric which will
be shown in the next Section. This work, described in [16]
and not completely reported here for the sake of brevity,
was basically aimed at finding out the "best
representative" of each class/module: as shown in Figure
3, we have chosen a set of algorithms per class based on
the criteria that the set must include at least two
algorithms covering the typical “class-behaviour” under
critical conditions. Following the scheme of Figure 3, we
describe now the classes and the algorithms.

Figure 3. Algorithms considered for the "pre-
selection" step

The Derivative Algorithms do not have any
background reference to be updated and produce their
output through one or more differences between
contiguous frames, thus they are robust against light
changes but present lacks of sensitivity. The "Double
Difference" computes two thresholded differences
between three frames: abs[F(t-2)-F(t-1)] and abs[F(t-2)-
F(t)] [3], [17]. The two binary images resulting from the
previous operations are AND-ed to obtain the final
output.

Background Algorithms typically include a "Detection
Module" and a "Background Maintenance Module". The
former classifies pixels by comparing the current frame
against the Background, the latter keeps the Background
constantly updated. The Background can be either an
image or a set of statistical parameters. Most algorithms
that use a reference need a training period to set up the
reference. A training period is made out of a certain
number of frames in which no objects are present in the
scene and the background changes only as result of
various sources of noise. The algorithms with Statistical
Detection module are generally thought to recognise and
filter out the background instabilities learning the pixels
variability during a training period. This yields a
sensitivity improvement respect to the derivative class.
However, excessive sensitivity can causes saturation or
also a diffused blindness that determines a poor detection;
these drawbacks are mainly due to the training conditions.
We have implemented a generic Gaussian Model based
algorithm (derived from [13] and [11]) that assumes a
gaussian distribution for background noise and the "W4"

DERIVATIVE

ALGORITHMS

(without
background)

BACKGROUND ALGORITHMS

DETECTION MODULE

Statistical
background

Image
background

BACKGROUND

UPDATING

MODULE

STATISTICAL
DETECTION

module
•Gaussian
•Intra Frame
•W4

IMAGE
DETECTION

module
•Abs. Diff.
•Block NCCF
•Pixel NCCF

UPDATING
module

•Blind updating 1-weight
•Updating by feedback
 with 2-weights

DERIVATIVE
class

•Single Diff.
•Double Diff.

 BACKGROUND class

algorithm, that is used as Pixel-Level algorithm in the
"Hydra" VS-system [7]. W4 is conceived to reduce the
blindness, typical of statistical algorithms, when the
pixels variation range is wide during the training period.
When this happens W4 sets a less selective thresholding
based on the hypothesis of a bimodal distribution for
noise. It computes three statistical parameters per each
pixel during the training period. We found that these
parameters characterise very well the typical pixel
variability as long as the working conditions are relatively
similar to the training conditions. In such a context, "W4"
filters-out effectively the background instability,
preserving a discrete sensitivity for zones affected by
noise types like waving objects moved by the wind,
blinking lights or flickering monitors. Finally, as a
variation of the previous two, we have implemented an
algorithm called “Intra Frame” that computes as noise
thresholds the maximum and minimum differences among
two frames for a pixel during the training period. It has
been ceonceived to patch the excessive sensitivity of
Gaussian Model and to get faster processing speed than
W4. The algorithms with Detection Module and based on
a Background Image are probably the most widely
known. Among these, we have chosen the Absolute
Difference because of its simplicity and velocity in
computation that grants a good point of view for a class
features estimation. Taking ideas from the Block
Matching Algorithm [2], we have implemented two
versions of the correlation between the current image and
the background, thus trying to solve the typical Absolute
Difference problem, i.e. the excessive sensitivity to light
changes. As known, indeed, the cross correlation is quite
independent of “global” light changes [5]. Thus we have
implemented two correlation-based algorithms: in the
algorithm referred to as Block NCCF the image is
partitioned in square blocks and the foreground blocks are
detected by thresholding the NCCF (Normalised Cross
Correlation Function) between the current and the
background images. The second algorithm, referred to as
Pixel NCCF, allows for a higher resolution detection
since the NCC among the current image and the
background is computed on a pixel-basis (i.e. each pixel
in the current image is the center of a block to be matched
with a corresponding background block).

As far as the Background Updating Module is
concerned, we considered a simple constant-weight
updating referred to as “1-Weight” (or "blind" updating,
since it does not take into account the pixel classification
performed by the detection module [5]) and an updating
strategy, referred to as “2-Weights”, which instead is
based on exploiting a feedback from the detection module
to the background updating module, as shown in Figure 4.

Figure 4. Output feedback in the background
updating

Basically, there are two weights that determines how
fast the intensity value (or the statistics) of a pixel in the
current image will contribute to the updating of the
background: if, in the current frame the pixel has been
classified as foreground, the slower weight will be chosen
while, if it has been classified as background, the fast
weight will causes a fast inclusion of the contribution
associated with the pixel into the reference. Since
misclassifications can happen, the two weights are
necessary and cannot be replaced by a trivial "full-
update/don't update" policy: the fast-but-not-immediate
weight act as low-pass filter, protecting background from
noisy pixel-transient updating; the non-zero updating for
foreground, allows for the recovering of foreground
misclassifications. The pixel value for the actual
background (time t) will be PixelBackgroundt(x,y) =

PixelImaget-1(x,y)· Weight(x,y) + PixelBackgroundt-1(x,y)

·[1-Weight(x,y)], where Weight(x,y) will vary as:

()
()
()

∈

∈
=

foregroundtyxPixelSlowWeight

backgroundtyxPixelFastWeight
yxWeight

,

,
,

 ,

 ,

This approach can be applied also to a Statistical
Background. In such a case, the two weights will
determine how many past frames will be considered for
the computation of the statistical parameters: if we are
updating a background pixel, so as for the fast weight, we
will consider only the few recent entries for the statistic,
in order to let the current entry to heavily condition the
global parameters of the whole statistic (i.e. fast updating
of the statistics). Conversely, if a pixel is classified as
foreground, its actual data will smoothly affect the
statistical reference parameters by considering a
population made out of several old frames (i.e. slow
updating of the statistics).

3. Performance evaluation

Since all Pixel-Level algorithms produce a binary
image as output we have devised a performance metric
which allows to evaluate frame by frame whether a pixel
has been classified correctly. To do this, after selecting
the frame to be analysed, we generate by-hand a ground-

truth mask corresponding to the correct pixel
classification (Figure 5).

Figure 5. An image and its ground-truth

The software implementing the considered low-level
algorithms contains also several functions aimed at
counting the pixels which appear as misclassified with
respect to a given ground-truth mask. These functions
allow for counting separately false positives (i.e.
background pixels erroneously classified as foreground)
and false negatives (i.e. background pixels erroneously
classified as foreground).

As a general principle, we choose a metric for
classification errors that accounts for misclassifications
relatively to the size of a Region Of Interest:

100% ⋅=
ROIsize

iedPixelsMisclassif
PixelError

Following this principle we can define the errors for
False Positives and Negatives:

100⋅=
B

FPpixels
FPerror% , 100⋅=

M

FNpixels
FNerror%

where B is the background size and M (mask) is the
foreground size (both in pixels). Extending the ROI to the
entire image we define the Absolute Error:

100⋅=
imageSize

iedPixelsMisclassif
ror%AbsoluteEr

Substituting the FP and FN errors % we obtain:

100⋅
+

=

+
⋅+

+
⋅=

imageSize

FNpixelsFPpixels

MB

M
FNerror%

MB

B
FPerror%ror%AbsoluteEr

where the full image size is imageSize = B+M.
The AbsoluteError% gives an "exact" measure of how

good is the algorithm performance, but it accounts rather
poorly for the human visual perception of the binary
output resulting from a given classification. Investigating
for this mismatch, we found that, in some images,
foreground objects are very small compared to the image
size, while, in some others, foreground objects dominate

the image area. In these cases the human visual judgement
is hugely biased by the performance of the algorithm into
the biggest region. To adopt a metric which follows more
closely the human visual perception we have defined the
VisualError% which gives more relevance to the False
Positives if objects are small in the image, or more
relevance to False Negatives if objects are big

()
{ } 100

;min2
⋅

⋅

+
=

BM

FPpixelsFNpixels
r%VisualErro

The following relation among the two defined errors
shows that they substantially differ by a factor which is
always>1, i.e. the VisualError% amplifies the
AbsoluteError% as a function of the difference between
object and background sizes:

ror%AbsoluteEr
Min

MaxMin
r%VisualErro

⋅

+
=

2
{ }
{ }BMgreatestMax

BMsmallestMin

;

;

=

=

Figure 6 shows two different elaboration for the source
image of Figure 5, where objects are small respect to the
image size:

 a) b)

Figure 6. Examples of two outputs for the image
of Figure 5

It is clear that Figure 6-(a) is much noisier than Figure
6-(b) but this is not evident looking at the absolute errors
in Table 1 that differs only by 0.7%: conversely, a better
description of the human visual perception is given by the
visual errors, where the difference grows to 13%.

Figure 6-(a) Figure 6-(b)
Absolute Error% 2,2% 1,5%

Visual Error% 41,7% 28,7%

Table 1. Absolute and Visual errors for the
previous outputs

We have recorded a set of 15 benchmark sequences
reproducing several combinations of the Typical
Problems considered in Section 1. To obtain the
experimental data reported in this paper we ran our
algorithms over entire sequences, selecting significant
frames containing specific Typical Problems for the data
measurements.

4. Experimental results

As introduced in Section 2, measurements has been
carried out in two steps: first we performed a Preliminary
Selection comparing algorithms belonging to the same
class, then we have compared the “winners” in a Final
Comparison. For the first phase we choose sequences
containing Typical Problems particularly harmful for the
considered class in order to put in evidence the qualities
of each algorithm. For the Final Comparison we have
used a sequence containing an as wide as possible variety
of Typical Problems, in order to find out the better
algorithm in general terms.

The Final Comparison scheme between the classes
(described in Section 2) is shown in Figure 7.

Figure 7. Scheme for the final comparison

Concerning the Pre-Selection, as for the Derivative
Algorithms, we found that the best performance on the
benchmark sequence were obtained with "Double
Difference" algorithm, the best Detection Module in case
of Statistical Reference was the algorithm referred to as
"W4", the best Detection Modules in case of Visual
Reference were the "Absolute Difference" and "Block
NCC" algorithms and the best Reference Updating
Module was the algorithm referred to as "2 Weights"
(more in [16]).

For the Final Comparison we choose a single sequence,
"Parco Sc", (length = 500 frames, frame size = 768 x 576
pixel, grey levels = 256, frame-rate=12 Hz, initial training
= 119 frames). This sequence has been chosen because of
its completeness in containing Typical Problems: light
changes when objects are in motion, background
instability, object camouflage, and foreground aperture.
To obtain measurements we have selected significant
frames containing Typical Problems: we choose frame
number 135 for camouflage; 170, 215, 271 for
background instability and a smooth light change; 290,
310, 323 for background instability and a huge 60 grey-
levels light change between 290 and 323; 365 for
foreground aperture; 423 for background restoring
evaluation after background instability.

We present here the results of the Final Comparison
between the Pre-Selection best-representatives resulting
from the Pre-Selection. The measurements are based on
the performance evaluation metric presented in Section 3
and follow the scheme shown in Figure 7. Each frame has
been processed by four algorithms: "Double Difference",
"W4" with "2 weights updating", "Absolute Difference"
with "2 weights updating" and "Block NCC" with "2
weights updating".

Per each processing we have calculated the errors:
False Positive%, False Negative%, Absolute Error% and
Visual Error%.

Table 2. False Positives errors in source frames
per selected algorithms

Table 2 shows how the "Double Difference" output has
the lowest False Positive noise quantity but, in Table 3,
the same algorithm has the worst score for False
Negatives, the best algorithm being in this case "W4"
with "2 weights updating". For this reason we reject the
"Double Difference".

Table 3. False Negatives errors in source frames
per selected algorithms

Table 4. Absolute Error in source frames per
selected algorithms

In the global error tables (Table 4 and Table 5) "W4"
with "2 weights updating" works fine until the light
remains constant while the "Block NCC" with "2 weights
updating" shows its major robustness to light changes in
central frames, when the light discontinuity is greater. By
evaluating the Absolute and Visual errors %, the

Pre-Selection

statistical bkg. visual bkg. bkg. updating moduleDERIVATIVE

Final Comparison

“2 Weights
Bkg/Fore
affected”

“Double
difference”

“W4”
“Absolute

Diff.”
“Block NCC"

Background updating module add-in

Frames of “Parco Sc” file sequenceFPerror%

135 170 215 271 290 310 323 365 423
Double
Difference 0% 0,004% 0,02% 0,06% 0,083% 0,34% 0,48% 1,51% 0,039%

W4 0,091% 0,335% 0,345% 0,812% 1,2% 3,43% 7,1% 22,4% 21%

Absolute
Difference

0,004% 0,101% 0,090% 0,068% 0,073% 0,383% 0,586% 2,11% 0,795%

Block Based
NCCF 0,028% 0,361% 0,270% 0,274% 0,240% 0,664% 1,003% 3,051% 1,113%

Frames of “Parco Sc” file sequenceFNerror%

135 170 215 271 290 310 323 365 423
Double
Difference 93,1% 77,9% 60,5% 60,2% 64,2% 32,5% 30,7% 34,7% 72,2%

W4 28,4% 21,4% 11,6% 21,5% 19,5% 14,7% 12,5% 13,4% 9,3%
Absolute
Difference 64,6% 47,9% 32,8% 53,8% 40,1% 36,5% 26,9% 28,4% 40,5%

Block Based
NCCF 68,3% 35,4% 11,8% 38,3% 32,7% 16,6% 16,6% 35,2% 27,6%

Frames of “Parco Sc” file sequenceAbsolute Error%

135 170 215 271 290 310 323 365 423
Double
Difference 0,348% 0,227% 0,337% 1,033% 1,52% 1,22% 1,52% 5,4% 1,06%

W4 0,197% 0,409% 0,41% 1,15% 1,61% 3,74% 7,29% 21,3% 20,8%
Absolute
Difference 0,245% 0,269% 0,28% 0,938% 0,969% 1,37% 1,49% 5,2% 1,35%

Block Based
NCCF 0,283% 0,484% 0,337% 0,89% 0,968% 1,1% 1,54% 6,8% 1,49%

algorithm which holds the best score for more frames is
the "Absolute Difference" with "2 weights updating".

Table 5. Visual Error in source frames per
selected algorithms

5. Conclusions

This work proposes a classification for Pixel-Level
algorithms suitable for general-purpose VS-systems. The
proposed scheme is effective in classifying several
algorithm known in literature and has suggested us the
right input for developing original and robust modules
like the "Absolute Difference" with "2 weights updating".
After a Pre-Selection step and the definition of a suitable
metric, we have compared the performances of selected
Pixel-Level algorithms with respect to their ability to
classify pixels into background and foreground. The result
of such a comparison suggest, as the best combination of
detection and updating modules, the "Absolute
Difference" with the "2 weights updating". This
evaluation accounts for both false positives and false
negatives in a manner that is similar to the human
perception of classification errors. The "Absolute
Difference" is the simplest among the algorithms that uses
a reference and its combination with the "2 weights
updating" makes the resulting algorithm quite
independent by any scene and objects constraints.

Our future work will be aimed at developing an as
general-purpose as possible, rule-based, tracking module
to be linked to the Pixel-Level processing module. This
will involve further analysis of Pixel-Level algorithms in
order to asses whether the performance evaluation metric
adopted in this paper and based on human visual
perception reflects the behaviour of such algorithms when
they are not the unique module of a VS-system but
instead act as input for higher-level processing modules.

References

[1] A. Amir, M. Lindenbaum, “Ground From Figure
Discrimination” proceedings Conference on Computer
Vision and Pattern Recognition, Computer Society,
1998,Pages: 521-527

[2] H.G. Musmann, P. Pirsch, H.J. Grallert, “Advances in
Picture Coding”, Proceedings of the IEEE, Vol. 73, No. 4,
April 1994, pp. 523-546

[3] H. Ching-Kai, C. Tsuhan, “Motion Activated Video
Surveillance Using TI DSP”, Proc. of DSPS Fest '99
Houston Texas, August 4-6, 1999

[4] L. Di Stefano, E. Viarani, “Vehicle Detection and Tracking
Using the Block Matching Algorithm”, Recent Advances in
Signal Processing and Communications N. Mastorakis
Editor, World Scientific and Engineering Society Press,
ISBN 960-8052-03-3, 1999.

[5] L. Di Stefano, I. Milani, E. Viarani, “Evaluation of
Inductive-Loop Emulation Algorithms for UTC Systems”,
Sixth International Conference on Control, Automation,
Robotics and Vision, ICARCV 2000, 5-8 December 2000,
Singapore. ISBN 981-04-3445-6.

[6] D.M. Gavrila “The Visual Analysis of Human Movement: a
Survey”, Computer Vision and Image Understanding Vol.
73, Number 1, January 1999, pp 82-98, 1999

[7] I. Haritaoglu, D. Harwood, L.S. Davis, “W4 Who? When?
Where? What? A real time system for detecting and tracking
people”, Automatic Face and Gesture Recognition,
Proceedings. Third IEEE International Conference on, 1998.

[8] I. Haritaoglu, D. Harwood, L.S. Davis, “Hydra: Multiple
People Detection and Tracking Using Silhouettes”, Image
Analysis and Processing, 1999. Proceedings. International
Conference on, Sept. 1999

[9] I. Haritaoglu, R Cutler, D. Harwood, L.S. Davis, “Backpack:
Detection of People Carrying Objects Using Silhouettes”,
Proceedings of the Seventh IEEE International Conference
on Computer Vision, 1999. Pages: 102 - 107 vol.1

[10] Prescient Systems, “Gotcha! Video surveillance for home
or office”, http://www.gotchanow.com/

[11] A. N. Rajagopalan, P. Burlina, P. Chellappa, “Higher Order
Statistical Learning for Vehicle Detection in Images”, The
Proceedings of the Seventh IEEE International Conference
on Computer Vision, 20-27 Sept. 1999, Pages 1204 - 1209
Vol. 2 ISBN: 0-7695-0164-8

[12] G. Rigoll, B. Winterstein, S. Muller, “Robust Person
Tracking in Real Scenarios with Non-Stationary Background
Using a Statistical Computer Vision Approach”, Second
IEEE Workshop on Visual Surveillance, 1999 (VS'99).
Pages: 41 - 47

[13] C. Stauffer, W.E.L Crimson, “Adaptive Background
Mixture Models for Real-Time Tracking”, Conference on
Computer Vision and Pattern Recognition, 1999. IEEE
Computer Society, Pages: 246 - 252

[14] K. Toyama, J. Krumm, B. Brumitt, B. Meyers,
“Wallflower: Principles and Practice of Background
Maintenance”, The Proceedings of the Seventh IEEE
International Conference on Computer Vision, 1999. Pages:
255 - 261 vol.1

[15] A. Utsumi, J. Ohya, “Image Segmentation for Human
Tracking Using Sequential-Image-Based Hierarchical
Adaptation”, Conference on Computer Vision and Pattern
Recognition, Proceedings of IEEE Computer Society, 1998.
Pages: 911 - 916

[16] E. Viarani, “Elaborazione di Sequenze di Immagini per
Monitoraggio del Traffico e Videosorveglianza”, PhD
Thesis, 2001, 1st March, Bologna Italy

[17] K. Yoshinari, M. Michihito, “A Human Motion Estimation
Method Using 3-Successive video frames”, Proc. Of Intern.
Conf. On Virtual systems and multimedia Gifu, 135-140 1996

Frames of “Parco Sc” file sequenceVisual Error%

135 170 215 271 290 310 323 365 423
Double
Difference 46,5% 32,4% 29% 31,9% 33.9% 22,3% 22,1% 22,8% 35,5%

W4 26,3% 58% 35,5% 35,5% 35.9% 68,2% 106% 89,9% 730%

Absolute
Difference 32,7% 38,4% 24,1% 29% 21.6% 25% 21,6% 20,1% 48%

Block Based
NCCF 37,8% 69,1% 30% 27,5% 21.6% 20,6% 22,3% 28,7% 52,9%

