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Abstract. We present a general-purpose tracker structured as a rule-based expert 

system. The system is aimed at tracking rigid and non-rigid objects in video 
sequences without any assumption on the working scenario, on the nature of objects 
and on their possible interactions. This tracking core can easily be integrated with 
application-specific modules to carry out specific video surveillance task requiring 

a significant degree of scene understanding. 
 

 
1. Introduction 

 
   A remarkable deal of work have been aimed at developing tracking systems dedicated to 
specific video surveillance applications, such as for example traffic monitoring [2], 
gesture recognition [3], detection of people exchanging objects [4]. Typically, “special-
purpose” trackers form the basic core of surveillance systems capable of providing a 
significant degree of scene understanding but are conceived to work within a given, well-
defined scenario. In [5] tracking is performed by means of a statistical approach in two 
predefined environments. In [6] an indoor tracker relies on a specific 3D scene model. In 
[7] the behaviour of the objects to track is modelled on the basis of a-priori knowledge 
concerning the scene under surveillance (i.e. a car park).  
   The goal of our work is to develop a video surveillance system capable of combining to 
a significant extent the requirement of generality with the ability of providing a 
considerable degree of scene understanding. The idea is to build a system based on a truly 
general-purpose tracking core which could be easily integrated with relatively small 
application-specific modules aimed at exploiting specific knowledge and carrying out 
specific tasks. 
   In this framework, we have designed a general-purpose tracking core, described in this 
paper, which is structured as a rule-based expert system. These AI-systems process the 
data stored into a working memory by means of a set of rules. The working memory 
contains the input data as well as the current assessments reached by the expert system. 
Rules, stored into a memory area referred to as knowledge-base, comprise a condition part 
and an action part. The condition is a sequence of tests verified on the data. The action is a 
sequence of instructions which are executed in case the condition is satisfied and that 
modify the content of the working memory. In addition, an inferential engine controls the 
execution, selecting the rules to be fired among those satisfied by data and then executing 
their action parts. One fundamental advantage of rule-based expert systems is that, since 
the behaviour of the system is embedded into a neatly identifiable part (i.e. the knowledge 
base) rather than scattered throughout the program, they can easily be modified or 
upgraded by adding or removing rules. 



   The architecture of rule-based expert systems matches naturally the ideas inspiring our 
work. In fact, the general-purpose tracking core consists of a basic set of rule-packages 
aimed at tracking, as accurately as possible, generic objects and group of objects, either 
rigid or non-rigid, without any assumption concerning their nature or expected 
interactions. Then, to perform a given surveillance tasks within a given scenario we can 
simply add application specific rule-packages embodying the knowledge associated with 
the actual application domain. For example, should the task be to detect luggage left 
unattended, we could add to the tracker a few rules aimed at triggering an alarm if a 
tracked object splits in two, one of the two is significantly smaller and remains motionless 
for a long time. Nevertheless, if the task is to detect suspicious persons in a car park, we 
may add to the tracker some rules aimed at detecting a relatively small object (which, in 
the addressed scenario, we can assume to be a person) staying for a long time close to a 
motionless object located within a specific image area (i.e. a parking place), which we can 
assume to be a car.  
   A tracking system structured as a rule-base expert system is described in [8]. However, 
unlike our general-purpose tracker, this system is explicitly conceived to track vehicles in 
traffic scenes.  
 
 
2. Tracking Approach 

 
   Our tracking approach distinguishes between blobs, which are regions of connected 
foreground pixels, and objects, which are the entities of interest for the tracker and may be 
made out of multiple blobs. As for the input data, a robust change-detection algorithm 
based on background subtraction and adaptation [1] classifies the pixels of the input grey-
level images into foreground (represented in white) and background (represented in 
black). Then, blobs are extracted by groping together the foreground pixels belonging to 
the a single connected component. Each blob is parameterised by the co-ordinates of two 
opposite corners of the bounding box surrounding the blob. At this stage each blob can 
represent either an entire object, an object subpart or can be generated by noise. 
   The first step of the tracking process is performed by a function, called move_box, that 
refines the boundig boxes associated with the blobs by including into a single, larger box 
those group of blobs which are located at small mutual distances.  
   By comparing the bounding boxes found in two contiguous frames the tracking 
algorithm is able to assess for each blob of the previous frame if it undergoes a split or 
takes part in a merger. The tracking task consists in establishing the associations between 
the objects found in the previous frame and the blobs just extracted and grouped within the 
bounding boxes. We describe now the tracking strategy, i.e. the strategy followed by the 
algorithm when the different events are detected. 
-  Straightforward tracking: this is the simplest tracking event, and is assumed by the 
algorithm whenever it is possible to track an object without ambiguities, i.e. when two 
blobs without neighbouring ones are detected approximately in the same position in two 
contiguous frames and there are no splits nor merges. In this case the blob in the frame at 
time t will be associated to the object found in the frame at time t-1. The concept of 
“approximately in the same position” is implemented trough the definition of a threshold 
on a distance measurement between the blobs. 
-  Split: a split is detected when a blob breaks in two distinct ones. Our algorithm policy 
validates every split as soon as it occurs, creating two new objects to be tracked. 
However, the tracker will resume the original object identity if, successively, it can 
reliably classify the split as a temporary fragmentation of the object into two blobs, which 
may be due, for example, to a poor detection carried out by the change detection 



algorithm. The objects born from a split share the same trajectory up to time t-1 and have 
independent paths from time t on. 
-  Merging: the tracking algorithm detects a merging event when two objects having close 
past trajectories and detected up to frame at time t-1 merge their bounding boxes in the 
frame at time t. If these conditions are satisfied, the algorithm creates a new object joining 
the trajectories of the two previous ones. 
-  Occlusion: this event is considered as a merging sub-case. Occlusions are distinguished 
from merging events on the basis of past trajectories: if the directions of the past 
trajectories of the two merged objects differ significantly, then the algorithm classifies the 
merging as an occlusion, i.e. a merging of two distinct objects. When an occlusion occurs, 
the algorithm “freezes” the updating of the features of the two distinct objects and waits 
for their successive separation in two distinct blobs. At the time of the separation, the 
algorithm calls a matching function which measures the similarity of the frozen objects to 
the new blobs resulting from the separation. In this process, the algorithms tries all the 
possible combinations in order to discover the correct association between the objects 
found before and after the occlusion. 
   Several features can be considered to measure the similarity and carry out the blob 
associations in case of occlusion. Currently, the matching function compares the velocities 
of the frozen objects to those of the new blobs. In the comparison, it assigns more 
significance to the direction than to the magnitude. The underlying assumption is that after 
the occlusion the objects will keep roughly their originals trajectories. 
-  Disappearance: an object detected in a frame at time t-1 is classified as lost in the frame 
at time t if no blob is present in the nearness of the expected object position at time t. If an 
object is lost in proximity of an image border, the algorithm assumes that the object has 
left the scene, else waits for the appearance of the object in proximity of the place where it 
disappeared. 
-  Noise: we have implemented a noise filter in the tracking algorithm that analyses the 
trajectories and the persistence in a place of an objects. If an object is almost stationary 
and does not move away significantly from the place where it has born, it is classified as 
noise and not shown in the output display. 
   Since the current tracking assessments are reached by the algorithm based on the most 
mature analysis of the input data, the algorithm assume that the current assessments are 
more reliable than the past ones, which had been reached on the basis of a more limited 
analysis. Hence, if an actual assessment turns out to be incoherent with an older one, the 
algorithm will withdraw the old assessment in reason of the new, more reliable one. 
According to this strategy, the tracker is able to revise the past scene interpretation as soon 
as more mature information becomes available. Clearly, this “playback” feature cannot be 
exploited in real-time applications, since in this case the system must deliver the best 
possible information at each new frame. However, it is particularly effective when the task 
is to analyse a previously recorded video sequence. 
   The above described tracking strategy has been formalized through a set of rules which 
constitute system’s knowledge-base. At every new frame the inferential engine verifies the 
condition parts by examining the blob and object data stored into the working memory and 
then fires the applicable rules. 
   The tracking system has been implemented using a package [9] that allows to 
encapsulate in a C++ class the overall rule-based expert system. This class can be 
accessed from any C++ application and contains the inferential engine, the working 
memory and the knowledge-base. In addition to those contained in the knowledge-base, 
other basic tracking concepts have been defined in C++ classes. For example we have 
defined classes implementing the concepts of blob and object, possessing methods such as 
trajectory-similarity estimation and velocity-similarity estimation, as well as attributes  



Figure 1 a): Outdoor7, b): Park2, c): Wallet 
defining object’s and blob’s data structures. At runtime, when a rule needs to use a basic 
concept, a class instance is created and stored into the working memory. 
 
 
3. Experimental Results 

 
   We ran the rule-based tracking algorithm on several video sequences in order to evaluate 
its performances. In this section we present the results obtained on three sequences (a shot 
taken from each sequence is shown in Figure 1) containing occlusions, splits, mergers and 
noise. 
   For each sequence, the results are presented in a graph. The graphs allow to evaluate the 
performance of the tracker since they show what the tracker should find (ground-truth) 
and what it has actually found (measurements). Graphs have a couple of bars associated 
with each object present in the considered sequence. The upper, solid-colour bar 
represents the ground truth, i.e. the interval of frames in which the object is actually 
present in the scene. The lower bar can be hatched in two different manners depending on 
the output yield by the tracker. A bar filled with vertical lines means that the object has 
been tracked correctly, a bar filled with oblique lines represents tracking errors. Examples 
of possible errors are: wrong localisation of the object’s bounding-box, object not 
detected, object appearing in the tracking output but not present in the scene (i.e.: objects 
muddled with others, lost objects, non existing objects). 
   Each of the following sub-section contains the results on one sequence. A short 
description of the sequence is also given. Three videos showing the tracking output 
superimposed to the original sequences can be found at the web-site: 
http://137.204.57.5/research/ videosurveillance/demo%20tracking/default.htm 
 
 
3.1. Sequence Outdoor7 
 
   This sequence (see Figure 1-a) contains an occlusion handled correctly by the system: a 
dog appears from left, then a bike enters from the right and around frame 160 they merge 
together in a single blob.  After the occlusion, around frame 180, two distinct blobs appear 
again and hence the inferential engine executes the matching function. Since after the 
occlusion the two objects maintain their original trajectories the velocity-based matching 
process succeeds in recovering the correct objects associations. 
   This is shown in Figure 2, where for both objects the lower, measurements bar is always 
filled with vertical lines. It is worth pointing out that during the occlusion (i.e. roughly 
from frame 160 to frame 180) the two  object are shown in the graph as tracked correctly. 
In fact, during this interval, though the system tracks a compound object  (i.e. a group), it 
knows exactly that this compound object is made out of the two merged ones (the output 
shows a single bounding box with the labels of the two merged objects). 

Figure 2 Tracking results on Outdoor7 
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Figure 3 Tracking results on Park 2 
 
3.2. Sequence Park2 
 
   In this sequence (see Figure 1-b) two persons enter the scene from opposite sides, met at 
the centre of the image, shakes hands and then restart walking. The trees in the 
background wave significantly, producing noisy intensity variations that cause the change-
detection algorithm to detect spurious foreground regions. When the two persons met, 
their blobs merge and then split for 3 successive times. Each of the three mergers is 
classified by the system as an occlusion, and then handled as described in Section 2. After 
the split following the first occlusion, the matching function fails the objects association, 
swapping their labels. This happens because the merging of the two blobs is caused by the 
shaking of hands, with blobs splitting as soon as the two persons cease shaking hands; in 
such a situation the persons are almost motionless and hence velocities are scarcely 
meaningful to establish the associations. The second occlusion is handled correctly, and 
thus the objects keep the wrong labels assigned them after the first occlusion. The third 
occlusion is managed erroneously by the system, so that the two labels are swapped again 
and the final result is that, due to the compensation of two errors, the objects keep their 
correct labels after the three successive occlusions. The graph in Figure 3 shows the 
tracking errors after the first and the second occlusion. It is worth pointing out that the 
noise due to waving trees is completely filtered out by the system thanks to the Noise rule. 
 
 
3.3. Sequence Wallet 
 
   This sequence is useful to illustrate the “playback” feature. A person enters a room, 
leaves a wallet on a PC-case and walks towards the camera (the shot in Figure 1-c is taken 
towards the end of the sequence). 
   Initially, the system cannot detect that the tracked blob contains two objects (the person 
holds the wallet in his hand). As soon as the person leaves the wallet on the PC-case the 
original object splits into two new ones. Hence, the system updates the identity of the 
previously tracked object classifying it as a group of two (the person and the wallet). Since 
we processed a previously recorded sequence, the output of the tracker shows the 
classification of the initial object as a group of two objects from the beginning of the 
sequence.  
   Accordingly, the graph in Figure 4 indicates that the person and the wallet are tracked 
correctly from the beginning of the sequence.  
 
 
4. Conclusions and future work 

 
   We have presented a general-purpose tracking system structured as a rule based expert 
system. The system tracks the binary blobs generated by a change-detection algorithm in 
absence of any assumption concerning their nature and the working scenario. The tracking 
strategy allows for modifying the past scene interpretation as soon as more mature 
information becomes available. This feature is useful to analyse a previously recorded 
video sequence.  
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Figure 4 Tracking results on Wallet 
 
   Our experimental results show that the system can handle correctly occlusion events (see 
the results on sequence Outdoor7) thanks to its ability to match the objects frozen before 
the occlusion with the new blobs found after the separation. So far the system deploys a 
matching function based on velocity measurements and assumes that objects tend to keep 
their original trajectories. This approach is typically effective in relatively simple scenes 
(e.g. it is potentially effective to track vehicles in traffic scenes) but, in several 
circumstances, can lead to tracking errors in (see the results on sequence Park2).  
   Our future work will be aimed at developing a more general and robust matching 
strategy. In this context, we are currently developing a strategy, which seems very 
promising from our preliminary results, based on a function which matches grey-level 
patterns and weights the matching score depending on the degree of overlapping between 
the associated binary blobs. 
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